Color-Texture-Based Image Retrieval System Using Gaussian Markov Random Field Model

نویسندگان

  • Meng-Hsiun Tsai
  • Yung-Kuan Chan
  • Jiun-Shiang Wang
  • Shu-Wei Guo
  • Jiunn-Lin Wu
  • Panos Liatsis
چکیده

The techniques of K-means algorithm and Gaussian Markov random field model are integrated to provide a Gaussian Markov random field model GMRFM feature which can describe the texture information of different pixel colors in an image. Based on this feature, an image retrieval method is also provided to seek the database images most similar to a given query image. In this paper, a genetic-based parameter detector is presented to decide the fittest parameters used by the proposed image retrieval method, as well. The experimental results manifested that the image retrieval method is insensitive to the rotation, translation, distortion, noise, scale, hue, light, and contrast variations, especially distortion, hue, and contrast variations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

A Markov random field image segmentation model for color textured images

We propose a Markov random field (MRF) image segmentation model, which aims at combining color and texture features. The theoretical framework relies on Bayesian estimation via combinatorial optimization (simulated annealing). The segmentation is obtained by classifying the pixels into different pixel classes. These classes are represented by multi-variate Gaussian distributions. Thus, the only...

متن کامل

GMM-Based Hidden Markov Random Field for Color Image and 3D Volume Segmentation

In this project1, we first study the Gaussian-based hidden Markov random field (HMRF) model and its expectationmaximization (EM) algorithm. Then we generalize it to Gaussian mixture model-based hidden Markov random field. The algorithm is implemented in MATLAB. We also apply this algorithm to color image segmentation problems and 3D volume segmentation problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010